Optimalisasi Akreditasi Perguruan Tinggi dengan Orkestrasi Business Intelligence Berbasis K-Means dan OLAP
DOI:
https://doi.org/10.55382/jurnalpustakaai.v5i3.1443Kata Kunci:
Business Intelligence, Higher Education Acreditation, K-Means Clustering, Silhouette Score, OLAPAbstrak
University accreditation is a key indicator in assessing the quality and competitiveness of higher education institutions. A high accreditation score reflects strong academic standards, institutional competitiveness, and trust from students, industry, and government. However, the accreditation process is highly complex as it involves multiple aspects, such as curriculum, student performance, faculty competence, as well as the quality of research and community service. Universities often face challenges in managing, analyzing, and presenting academic data systematically, which results in suboptimal strategic decision-making for improving accreditation. The limited use of Business Intelligence (BI) in academic data analysis reduces the effectiveness of identifying the main factors influencing institutional performance. This study aims to develop an academic analysis model based on BI by integrating K-Means Clustering to group academic performance according to specific patterns, Silhouette Score to evaluate clustering quality, and Online Analytical Processing (OLAP) to present academic data in an interactive multidimensional form. The research data were obtained from the Institute for Quality Assurance and Educational Development (LPPPM), covering faculty, student, research, and community service data, as well as other accreditation indicators. The research method includes data collection and preprocessing, application of K-Means for clustering, evaluation using Silhouette Score, and the development of an OLAP dashboard for exploring academic data across relevant accreditation dimensions. The results of the study show that the K-Means method with k = 2 produces the most optimal grouping of study program academic performance based on the highest Silhouette Score value, which is then successfully visualized multidimensionally through OLAP to clarify the distribution, patterns, and differences in characteristics between clusters in an interactive dashboard.
Keywords: Business Intelligence; Higher Education Accreditation; K-Means Clustering; Silhouette Score; OLAP.
Unduhan
Referensi
A. Eko Syaputra, R. Adawia, and N. Hasanah Nasta, “Sistem Penunjang Keputusan Pembelian Motor Bekas Oleh Dealer MOKAS Menggunakan Metode MOORA,” J. Pustaka AI (Pusat Akses Kaji. Teknol. Artif. Intell., vol. 4, no. 2, pp. 47–52, 2024, doi: 10.55382/jurnalpustakaai.v4i2.758.
T. Husnatun Hasanah dan A. Eko Syaputra, “Pembangunan Sistem Informasi Persediaan Toko Kinara menggunakan Bahasa Pemrograman PHP dan MySQL”, Jurnal Pustaka AI, vol. 4, no. 1, hlm. 09–16, Apr 2024.
B. Ghufron, B. Surarso, dan R. Gernowo, “Implementation of OLAP and K-Medoids Clustering for Accreditation Data Analysis of Study Programs,” IOP Conf. Ser. Mater. Sci. Eng., vol. 879, no. 1, art. no. 012067, 2020, doi: 10.1088/1757-899X/879/1/012067.
I. A. Najm, “OLAP Mining with Educational Data Mart to Predict Students’ Performance,” Informatica, vol. 46, no. 5, pp. 673–684, 2022, doi: 10.31449/inf.v46i5.3853.
A. E. Syaputra dan Y. S. Eirlangga, “Prediction of Patient Visit Rates Using the Monte Carlo Method,” J. Inf. dan Teknologi, vol. 4, no. 2, pp. 97–102, 2022, doi: 10.37034/jidt.v4i2.202.
A. E. Syaputra, “Model Simulasi untuk Memperkirakan Tingkat Penjualan Garam Menggunakan Metode Monte Carlo,” J. Inf. dan Teknologi, vol. 4, no. 4, pp. 188–193, 2022, doi: 10.37034/jidt.v4i4.244.
D.-M. Córdova-Esparza, J. Terven, J.-A. Romero-González, et al., “Predicting and Preventing School Dropout with Business Intelligence: Insights from a Systematic Review,” Information, vol. 16, no. 4, art. no. 326, 2025, doi: 10.3390/info16040326.
W. Villegas-Ch, M. Luján-Mora, dan R. Buenrostro-Mariscal, “A Business Intelligence Framework for Analyzing Academic Performance,” Sustainability, vol. 12, no. 14, art. no. 5745, 2020, doi: 10.3390/su12145745.
N. A. M. Isa, M. Y. Mashor, dan N. Othman, “Clustering Analysis for Classifying Student Academic Performance,” Applied Sciences, vol. 12, no. 19, art. no. 9467, 2022, doi: 10.3390/app12199467.
R. S. Nugroho, A. Widiyanto, dan A. Harjoko, “Penggunaan Metode K-Means dan K-Means++ sebagai Clustering Data Covid-19 di Pulau Jawa,” J. Teknika, vol. 11, no. 3, pp. 170–179, 2022.
R. G. Santosa, Y. Lukito, dan A. R. Chrismanto, “Classification and Prediction of Students’ GPA Using KMeans Clustering Algorithm to Assist Student Admission Process,” J. Inf. Syst. Eng. Bus. Intell., vol. 7, no. 1, pp. 1–10, 2021, doi: 10.20473/jisebi.7.1.1-10.
M. I. Setiawan dan L. Handoko, “Implementasi Business Intelligence dalam Sistem Informasi Akademik Menggunakan OLAP,” J. Sist. Inf. dan Informatika (JSII), vol. 5, no. 2, pp. 99–108, 2023, doi:
32662/jsii.v5i2.478.
R. Surbakti, M. A. Jabar, dan M. I. Setiawan, “Perancangan Data Warehouse dan OLAP dalam Mendukung Sistem Manajemen Pendidikan,” J. Teknol. Inf. dan Ilmu Komputer (JTIIK), vol. 9, no. 3, pp. 567–575, 2022, doi: 10.25126/jtiik.202293754.
A. E. Syaputra, Y. Hendra, and A. Mardiah, “Optimasi Penjualan Oleh-oleh Sumbar Menggunakan Analisa Diferensial,” J. FASILKOM, vol. 14, no. 3, pp. 637–645, 2024, doi: 10.37859/jf.v14i3.7938.
Y. L. Goh, Y. H. Goh, C. C. Yip, dan H. T. Chen, “Prediction of Students’ Academic Performance by KMeans Clustering,” Sci. Proc. Ser., vol. 2, no. 1, pp. 1–6, 2020, doi: 10.31580/sps.v2i1.1205.
N. I. M. Talib, N. A. Abd Majid, dan S. Sahran, “Identification of Student Behavioral Patterns in Higher Education Using K-Means Clustering and Support Vector Machine,” Applied Sciences, vol. 13, no. 5, art. no. 3267, 2023, doi: 10.3390/app13053267.
N. Hasanati, E. Khudzaeva, E. Nurmiyati, E. Elpawati, dan N. Hakiem, “Dashboard of Quantitative Data for Accreditation of Undergraduate Level Study Program Using API,” in Proc. Int. Conf. Qur’an and Hadith Studies (ICONQUHAS), 2020, doi: 10.4108/eai.2-10-2018.2295281.
M. A. Fadhil, “Analisa Clustering untuk Mengklasifikasi Kinerja Akademik di Sekolah Menggunakan Algoritma K-Means,” J. Ilmiah Teknologi Informasi, vol. 10, no. 2, pp. 1–10, 2024, doi:
37673/jiti.v10i2.16325.
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Putri Sakinah, Aldo Eko Syaputra, Zumardi Rahman, Muhammad Fajri, Haikal Fatwa Rachmansyah

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.




